Article ID Journal Published Year Pages File Type
1240315 Spectrochimica Acta Part B: Atomic Spectroscopy 2010 6 Pages PDF
Abstract

The plasma produced by the irradiation of a hydrogen and deuterium containing carbon fiber composite with infrared laser pulses of 4-ns pulse duration has been investigated. The experiments were carried out under argon at reduced pressure. Microscopic analyses of the irradiated sample surface were performed to measure the ablation depth. Time- and space-resolved optical emission spectroscopy was applied to characterize the evolution of spectral line emission as a function of time and distance from the surface. Particular attention was paid to the time-of-flight characteristics of the hydrogen and deuterium Balmer α spectral lines. According to the different atomic masses of both isotopes, the expansion of hydrogen into the low pressure argon atmosphere was found to be slightly faster than that of deuterium. The effect of plume segregation is pressure dependent and tends to increase the analytical signal of heavy atoms with respect to lighter ones during laser-induced breakdown spectroscopy.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,