Article ID Journal Published Year Pages File Type
1240638 Spectrochimica Acta Part B: Atomic Spectroscopy 2007 6 Pages PDF
Abstract
A new sensitive methodology for the determination of total reduced sulfur species in natural waters and acid volatile sulfides in sediments at low levels (μg L− 1) is described. Reduced sulfur species were separated from the water matrix in the form of H2S after reaction with hydrochloric acid in a commercial vapor generator coupled to an inductively coupled plasma quadrupole mass spectrometer (VG-ICP-QMS) equipped with a reaction cell. The method avoided the effect of polyatomic isobaric interferences at m/z 32 caused by 16O16O+ and 14N18O+ through the elimination of the aqueous matrix, a source of oxygen. By introducing a mixture of helium and hydrogen gases into the octopole reaction cell, a series of ion-molecule reactions were induced to reduce the interfering polyatomic species. Operating conditions of the octopole reaction cell system and the analyzer were optimized to get the best signal to background ratio for 32S; a full factorial 23 experimental design was developed in order to evaluate which variables had a significant effect and a simplex methodology was applied to find the optimum conditions for the variables. The new method was evaluated by comparison to the standard potentiometric method. The analytical methodology developed was applied to the analysis of reduced sulfur species in natural waters and acid volatile sulfides in sea sediments.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,