Article ID Journal Published Year Pages File Type
1240886 Spectrochimica Acta Part B: Atomic Spectroscopy 2009 4 Pages PDF
Abstract
High-sensitivity fluorescence-yield x-ray absorption fine structure spectroscopy (XAFS) has been investigated to characterize the local structure around arsenic shallow implant in silicon. Fluorescence-yield XAFS experiments were performed using a high-brilliance synchrotron radiation beam from an in-vacuum-type undulator in a third-generation light source. In addition to investigating the efficiency of high-brilliance undulator x-rays during the fluorescence-yield XAFS measurements, we compared the analytical performance of both the wavelength dispersive spectrometer (WDS) and the energy dispersive spectrometer (EDS) based on the silicon drift detector (SDD). It was confirmed that the WDS reduces the influence of scattering background due to the high spectral resolution. Another advantage of the WDS is high counting rate measurements. It was found that fluorescence-yield XAFS using undulator x-rays combined with the WDS permits superior sensitivity measurements.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,