Article ID Journal Published Year Pages File Type
1241069 Spectrochimica Acta Part B: Atomic Spectroscopy 2008 9 Pages PDF
Abstract

Laser-induced plasmas have been characterized by emission spectroscopy, including the measurement of curves of growth. The plasmas have been generated in air at atmospheric pressure using an infrared Nd:YAG laser from a set of Fe–Ni alloys with varying Fe concentrations. The procedure used provides, in addition to the apparent temperature T and electron density Ne, a parameter N′l (the atom number density for 100% concentration times the length of the plasma along the line-of-sight), relevant to obtain the self-absorption and the intensity of the emission lines. The temporal evolution of the plasma parameters has been deduced from the measurement and fitting of the curves of growth. A fast temporal decrease of N′l is obtained for ions, whereas a gradual increase takes place for neutral atoms. The temporal evolution of the line intensity in the optically thin limit and the self-absorption of neutral atom and ion lines have been obtained experimentally and calculated from the evolution of the plasma parameters. The usefulness of the curve-of-growth method in measurements with time integration, in spite of the fast variation of the plasma parameters, has been demonstrated.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,