Article ID Journal Published Year Pages File Type
1241418 Spectrochimica Acta Part B: Atomic Spectroscopy 2007 12 Pages PDF
Abstract

Matrix effects and other deviations from the standard model of glow discharge optical emission spectroscopy (GD-OES) have been investigated in the Zn–Al–Cu system in a Grimm-type discharge in argon and neon. In ionic spectra of the elements that can be ionized by asymmetric charge transfer with ions of the discharge gas, most observed deviations from the standard model can be explained by variations of the number density of ions of the discharge gas, caused by asymmetric charge transfer reactions with the matrix element. Similar mechanism, but involving metastables of the discharge gas, was observed for the Cu II spectrum in neon. Some matrix effects in atomic spectra of aluminium and possibly also copper suggest that three-body recombination of ions of the discharge gas, assisted by an analyte atom, is responsible for excitation of certain atomic levels of the analyzed elements. Excited atomic states of the analyzed elements have higher fractional populations in neon than argon, by factors that are similar for all three elements and the median of which is slightly less than 3. It is shown which lines are free of matrix effects and suitable for highly accurate analysis of Zn–Al–Cu alloys by GD-OES and how to optimize the calibration model. Neon can be a reasonable alternative to argon as the discharge gas for some applications.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
,