Article ID Journal Published Year Pages File Type
1241422 Spectrochimica Acta Part B: Atomic Spectroscopy 2007 12 Pages PDF
Abstract

Synchrotron radiation, collimated to a μm scale was used for the determination of trace elements in micro-tektites and spherule material for the first time. The experimental set-up of the SXRF microprobe at beamline L at HASYLAB at DESY offers a suitable method for performing non-destructive in situ multi-element analysis focusing on spatial trace element distributions and mineral phases of the melted ejecta material from the Cretaceous/Tertiary boundary. The spatial distribution of trace elements was determined in melt inclusions as well as in phase transitions in selected parts of chlorite–smectite spherules and tektite glass material by using a beam with a diameter of 15 μm collimated with a glass capillary for line- and area scans as well as for single point measurements for elements with Z between 19 and 92. The analyzed spherules show alteration features but also zonation and carbonate inclusions, originating from the Chicxulub impact event. These initial results demonstrate the potential of μ-SXRF analysis for the discrimination of alteration and primary signals of the spherules and re-construction of their genetic evolution. It could be shown that the spherules represent a complex mixture of different materials from the subsurface at the Chicxulub impact site.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,