Article ID Journal Published Year Pages File Type
1241707 Talanta 2016 8 Pages PDF
Abstract

•Photoelectrochemical CaMV35S biosensor as a new method was fabricated.•SiO2@CdTe quantum dots core-shell nanoparticles acted as signal indicators.•The biosensors could discriminate the transgenic from non-transgenic soybean.•Simple preparation, good selectivity and high sensitivity were obtained.

A methodology for detection of the Cauliflower Mosaic Virus 35S(CaMV35S) promoter was developed to distinguish transgenic from non-transgenic soybean samples by using photoelectrochemical (PEC) biosensor. In this PEC biosensing system, the as-prepared gold nanoparticles-reduced graphene oxide acted as a nanocarrier to immobilize the thiol-functional probe (probe1), and the SiO2@CdTe quantum dots (QDs) core-shell nanoparticles tagged with the amino-functional probe (probe2) acted as signal indicators, respectively. In the presence of target DNA (tDNA) of CaMV35S, the binding of tDNA with probe1 and probe2 through the high specific DNA hybridization led to the fabrication of sandwich structure, and thus the high loading of the signal indicators SiO2@CdTe QDs at the electrode surface, which increased the PEC signal. The increased PEC signal depended on the concentration of tDNA, and a wide linear range from 0.1 pM to 0.5 nM with low detection limit of 0.05 pM was obtained. In addition, the PEC biosensor has been successfully used for discriminating transgenic soybean from non-transgenic samples, which was consistent with the polymerase chain reaction (PCR) results, suggesting the proposed PEC biosensor is a feasible tool for the further daily genetically modified organism detection.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , ,