Article ID Journal Published Year Pages File Type
1242429 Talanta 2016 8 Pages PDF
Abstract

•PASSIL technique was used for a first time for polar compounds sampling with a success.•The stability of selected IL in water matrix during 14-days semi-static passive extraction was proven.•[P666-14][N(CN)2] provided the high extraction efficiency for most analytes.•The influence of analytes pKa, lipophilicity and ILs type were discussed.

Ionic liquids (ILs) are one of the very promising media for the passive sampling of organic contaminants in water. These compounds offer a wide range of interactions with various analytes and give possibilities to control analyte properties by altering their structures, but most of all, possess a high polarity independent of the water solubility. Recently, some ILs were successfully applied as the receiving phase in the passive sampling of polyaromatic hydrocarbons, and this approach was acronymized to PASSIL.In this paper, we aimed to verify the applicability of the PASSIL technique for the selective extraction and enrichment of polar and semi-polar compounds from aqueous environments. The test kit of analytes comprised selected pharmaceuticals and phenol-type compounds, while the applied ILs were alkylimidazolium- and alkylphosphonium entities with a variety of anions. The 14-day-long experiments were performed in static and semi-static no-renewal systems. The kinetics of the uptake process, the analyte extraction efficiency and the sampling rates for all analytes were determined. One of the tested ionic liquids [P666-14][N(CN)2] presented very promising properties both as a stable medium between polyethersulfone (PES) membranes as well as a highly effective extraction phase. The uptake kinetics of the analytes and the determined sampling rates confirm the better and faster efficiency of PASSIL extraction when compared to commercially available passive samplers. Additionally, some selectivity was observed during analyte extraction, which results from the specific interaction between the IL and analytes, but not from the lipophilicity or ionization state of the analytes. These very promising findings make the PASSIL approach a very promising and competitive analytical tool for the extraction of environmental contaminants over a wide polarity range.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,