Article ID Journal Published Year Pages File Type
1242482 Talanta 2010 5 Pages PDF
Abstract
A novel electrochemical sensing platform by modification of electroactive thionine (Th) onto gold electrode surface was constructed, which was realized by diazotization of 4-aminothiophenol (ATP) self-assembled monolayer, followed by coupling of Th with the diazonium group to form a covalent diazo bond. A pair of well-defined redox peaks of Th was observed in the cyclic voltammetric measurement. The resulting diazo-ATP monolayer displayed superior electrical conductivity, which contributed to the sensitive detection of hydrogen peroxide (H2O2). The immobilized Th also showed a remarkable stability, which may benefit from the π-π stacking force and the covalent diazo bond between diazo-ATP and Th molecules. Under the optimized experimental conditions, the current fabricated non-enzyme and reagentless sensor could show a rapid response to H2O2 within 3 s and a linear calibration plot ranged from 1.0 × 10−6 to 6.38 × 10−3 M with a detection limit of 6.7 × 10−7 M. The current fabrication strategy of electroactive interface is expected to be used as a versatile route for the immobilization of more electroactive molecules and offer more opportunities for the applications in electrochemical sensor, biosensor, electrocatalysis, etc.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,