Article ID Journal Published Year Pages File Type
1243144 Talanta 2008 6 Pages PDF
Abstract
Single-stranded deoxyribonucleic acid (ssDNA)-wrapped single-walled carbon nanotubes (SWNTs) were modified on the surface of glassy carbon electrode (GCE) by covalent modification technique. Field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectrum (XPS), electrochemical impedance spectroscopy (EIS), and cyclic voltammetric (CV) were used to characterize the properties of this modified electrode. The results showed that SWNTs-ssDNA composites were successfully immobilized onto the surface of GCE. Moreover, this modified electrode exhibited high stability, largely active areas, and efficiently electrocatalytic activities. It had been used for the analysis of various biomolecules, such as dopamine (DA), uric acid (UA), and ascorbic acid (AA), and the results were satisfactory.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,