Article ID Journal Published Year Pages File Type
1243632 Talanta 2014 13 Pages PDF
Abstract

•Tissue-specific metabolite files of Belamcanda chinensis rhizome were studied.•Distribution patterns of flavonoids in B. chinensis rhizome were concluded.•Seven iridal-triterpenes were tentatively identified firstly from B. chinensis.•Accumulation rules of secondary metabolites when the plant grew were summed up.

The rhizome of Belamcanda chinensis (L.) DC. is a traditionally used medicinal material in China. Due to increasing demand, B. chinensis has been cultivated widely, and thus the study on its rational utilization of medicinal part and guidelines for the optimal cultivation and harvest is an important issue. Considering flavonoids were the main bioactive secondary metabolites of B. chinensis, fluorescence microscopy, laser microdissection (LMD), ultra-high performance liquid chromatography-quadrupole/time-of-flight-mass spectrometry (UHPLC-Q/TOF-MS), and UHPLC coupled with triple quadrupole mass spectrometer (UHPLC–QqQ-MS) were applied to profile and determine flavonoids in various tissues in this study. Consequently, 43 peaks were detected by UHPLC-Q/TOF-MS, and 26 flavonoid compounds combined with seven triterpene compounds were identified or tentatively identified in the tissue extractions. The results indicated that the hydrophobic compounds, especially flavonoid or isoflavonoid aglycones and xanthone mainly accumulated in the cork, whereas the hydrophilic compounds, namely the flavonoid and isoflavonoid glycosides were usually found in the cortex or center (the part inside of endodermis). Samples of rhizomes from different growth ages and origins were simultaneously analyzed. It was shown that the bulb or lateral part of the rhizome generally possessed more total flavonoids than the vertical part or the primordium. The present study established a new practical method to evaluate the quality of the rhizome of B. chinensis and to explore the relationship between distribution patterns of secondary metabolites and growth years of plants, thus important information for cultivation and processing was provided.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,