Article ID Journal Published Year Pages File Type
1243839 Talanta 2016 7 Pages PDF
Abstract

•We have developed hybrid analytical methods based on the CL detection system.•We have successfully utilized the present method for the determination of Au(III) and Ga(III) in real samples.•A detection limit of 0.4 μmol dm−3 for Au(III) and 0.6 μmol dm−3 for Ga(III).

A rapid and sensitive flow method, based on the combination of on-line solvent extraction with reversed micellar mediated chemiluminescence (CL) detection using rhodamine B (RB), was investigated for the selective determination of Au(III) and Ga(III) in aqueous solutions. 2.0 M HCl was the optimum for extracting Au(III) while a 5.0 M HCl solution containing 2.5 M LiCl was selected as an optimum acidic medium for extraction of Ga(III). The Au(III) and Ga(III) chloro-complex anions were extracted from the above aqueous acidic solutions into toluene as their ion-pair complexes with the protonated RBH+ ion followed by membrane phase separation in a flow system. In a flow cell of a detector, the extract was mixed with the reversed micellar solution of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water (1.0 M HCl) containing 0.10 M cerium(IV) and 0.05 M lithium sulfate. Then uptake of the ion-pair by the CTAC reversed micelles and the subsequent CL oxidation of RB with Ce(IV) occurred easily and the CL signals produced were recorded. Using a flow injection system, a detection limit (DL) of 0.4 μM Au(III) and 0.6 μM Ga(III), and linear calibration graphs with dynamic ranges from the respective DLs to 10 μM for Au(III) and Ga(III) were obtained under the optimized experimental conditions. The relative standard deviations (n=6) obtained at 2.0 µM Au(III) and 4.0 µM Ga(III) were 3.0% and 2.4%, respectively. The presented CL methodology has been applied for the determination of Au(III) and Ga(III) in water and industrial samples with satisfactory results.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,