Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1243869 | Talanta | 2009 | 5 Pages |
Catalytic effect of metal ions on luminol chemiluminescence (CL) was investigated by sequential injection analysis (SIA). The SIA system was set up with two solenoid micropumps, an eight-port selection valve, and a photosensor module with a fountain-type chemiluminescence cell. The SIA system was controlled and the CL signals were collected by a LabVIEW program. Aqueous solutions of luminol, H2O2, and a sample solution containing metal ion were sequentially aspirated to the holding coil, and the zones were immediately propelled to the detection cell. After optimizing the parameters using 1 × 10−5 M Fe3+ solution, catalytic effect of some metal species was compared. Among 16 metal species examined, relatively strong CL responses were obtained with Fe3+, Fe2+, VO2+, VO3−, MnO4−, Co2+, and Cu2+. The limits of detection by the present SIA system were comparable to FIA systems. Permanganate ion showed the highest CL sensitivity among the metal species examined; the calibration graph for MnO4− was linear at the concentration level of 10−8 M and the limit of detection for MnO4− was 4.0 × 10−10 M (S/N = 3).