Article ID Journal Published Year Pages File Type
1244200 Talanta 2011 6 Pages PDF
Abstract

In the present work, two morphologies of SiO2 nanomaterials (SiO2 nanotubes and nanoparticles) have been successfully synthesized in supercritical fluids (SCFs). The cataluminescence (CTL) features of the two SiO2 nanomaterials to some common harmful gases were compared, and the results showed that SiO2 nanotubes had better CTL sensing characteristic to some common harmful gases. The SiO2 nanotubes not only had uniform size and shape with a high specific surface area, but also exhibited superior sensitivity and selectivity to ethyl acetate vapor. Using the SiO2 nanotubes as sensing material, a CTL sensor for ethyl acetate vapor was developed. The proposed sensor showed high sensitivity and specificity to ethyl acetate at optimal temperature of 293 °C, a wavelength of 425 nm and a flow rate of 345 mL/min. With a detection limit of 0.85 ppm, the linear range of CTL intensity versus concentrations of ethyl acetate vapor was 2.0–2000 ppm. None or only very low levels of interference were observed while the foreign substances such as acetone, acetaldehyde, acetic acid, formaldehyde, ammonia, ethanol, benzene and methanol were passing through the sensor. This method allows rapid determination of gaseous ethyl acetate at workshop.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,