Article ID Journal Published Year Pages File Type
1244948 Talanta 2009 8 Pages PDF
Abstract
By using a simple Sequential Injection Analysis (SIA) manifold and in base to the kinetic reaction of the molybdenum with As(V) and P(V) was possible to determine As(III), As(V) and P(V) in simple, binary and ternary samples. The activation energies for the reaction between molybdenum and As(V) and P(V) were of 70.90 kJ mol−1 and of 19.02 kJ mol−1, respectively, therefore it was possible to determine both analytes in mixtures by using different reaction temperature. When the analyses were carried out at room temperature, only the P(V) supplied analytical signal; with increased temperature, the kinetics of reaction for As(V) also increased, and a signal was obtained, being 55 °C the optimum temperature. In order to determine As(III), it was oxidized into As(V) with KIO3, and the reaction was carried out in the same way as for As(V). To resolve mixtures, an equations system from six calibration curves with different sequences of SIA at different temperature was performed. The lineal ranges were between 0.5 μg mL−1 and 10 μg mL−1 with a repeatability and reproducibility between 0.7% and 5.2% and detection limits between 0.36 μg mL−1 and 0.58 μg mL−1. In binary mixtures of P(V)/As(V) the recoveries were close to 100% for both analytes at ratios lesser than 10:1. For As(V)/As(III) ratios between 1:1 and 5:1 the recoveries were ranged between 85% and 95%. The method was applied in mine tailings and in arsenopyrite. The results showed that the soluble arsenic was found oxidized as As(V). These results were compared with those obtained by atomic absorption spectrometry and both proved to be very close.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,