Article ID Journal Published Year Pages File Type
1245119 Talanta 2009 5 Pages PDF
Abstract

A new end-column ‘hybrid’ contactless conductivity detector for microchip capillary electrophoresis (CE) was developed. It is based on a “hybrid” arrangement where the receiving electrode is insulated by a thin layer of insulator and placed in the bulk solution of the detection reservoir of the chip, whereas the emitting electrode is in contact with the solution eluted from the channel outlet in a wall-jet arrangement. The favorable features of the new detector including the high sensitivity and low noise, can be attributed to both the direct contact of the ‘emitting’ electrode with the analyte solution as well as to the insulation of the detection electrode from the high DC currents in the electrophoretic circuit. Such arrangement provides a 10-fold sensitivity enhancement compared to currently used on-column contactless conductivity CE microchip detector as well as low values of noise and easy operation. The new design of the wall-jet conductivity detector was tested for separation of explosive-related methylammonium, ammonium, and sodium cations. The new detector design reconsiders the wall-jet arrangement for microchip conductivity detection in scope of improved peak symmetry, simplified study of inter-electrode distance, isolation of the electrodes, position of the wall-jet electrode to the separation channel, baseline stability and low limits of detection.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,