Article ID Journal Published Year Pages File Type
1245180 Talanta 2007 5 Pages PDF
Abstract

In the analysis of gene expression profiles, the number of tissue samples with genes expression levels available is usually small compared with the number of genes. This can lead either to possible overfitting or even to a complete failure in analysis of microarray data. The selection of genes that are really indicative of the tissue classification concerned is becoming one of the key steps in microarray studies. In the present paper, we have combined the modified discrete particle swarm optimization (PSO) and support vector machines (SVM) for tumor classification. The modified discrete PSO is applied to select genes, while SVM is used as the classifier or the evaluator. The proposed approach is used to the microarray data of 22 normal and 40 colon tumor tissues and showed good prediction performance. It has been demonstrated that the modified PSO is a useful tool for gene selection and mining high dimension data.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,