Article ID Journal Published Year Pages File Type
1245183 Talanta 2007 7 Pages PDF
Abstract

A novel method for preconcentration of methylmercury and inorganic mercury from water samples was developed involving the determination of ng l−1 levels of analytes retained on the silica C18 solid sorbent, previous complexation with ammonium pyrrolidine dithiocarbamate (APDC), by slurry sampling cold vapor atomic absorption spectrometry (SS-CVAAS) in a flow injection (FI) system. Several variables were optimized affecting either the retention of both mercury species, such as APDC concentration, silica C18 amount, agitation times, or their determination, including hydrochloric acid concentration in the suspension medium, peristaltic pump speed and argon flow-rate. A Plackett–Burman saturated factorial design permitted to differentiate the influential parameters on the preconcentration efficiency, which were after optimized by the sequential simplex method. The contact time between mercury containing solution and APDC, required to reach an efficient sorption, was decreased from 26 to 3 min by the use of sonication stirring instead of magnetic stirring. The use of 1 mol dm−3 hydrochloric acid suspension medium and 0.75% (m/v) sodium borohydride reducing agent permitted the selective determination of methylmercury. The combination of 5 mol dm−3 hydrochloric acid and 10−4% (m/v) sodium borohydride was used for the selective determination of inorganic mercury. The detection limits achieved for methylmercury and inorganic mercury determination under optimum conditions were 0.96 and 0.25 ng l−1, respectively. The reliability of the proposed method for the determination of both mercury species in waters was checked by the analysis of samples spiked with known concentrations of methylmercury and inorganic mercury; quantitative recoveries were obtained.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,