Article ID Journal Published Year Pages File Type
1245939 Talanta 2007 5 Pages PDF
Abstract

This study describes a flexible approach that allows us to characterize the long-term stability of antioxidants by using a thermodynamically extended Arrhenius equation. We use retinol, Vitamin A, as a model antioxidant and its degradation behaviors are characterized for both stabilized and non-stabilized systems; in this study, by using a fluid bed technique, we immobilize the retinol in lipid particles, thus increasing its thermal stability in complex formulations, such as aqueous polymer gels and emulsions. Our approach demonstrates that the degradation behaviors of the retinol show a functional relationship with temperature and time, which makes it possible to use the Arrhenius approach. This result allows us to precisely characterize the stability of antioxidants in complex formulations for long time.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , ,