Article ID Journal Published Year Pages File Type
1246170 Talanta 2007 4 Pages PDF
Abstract

Recently, for sensor application, porous silicon has received a great deal of attention due to the high specific surface area and the easy fabrication using some established processes of the usual silicon technology. We herein, report the development of a novel immunosensors based on porous silicon for antigen detection. The multilayer immunosensor structure was fabricated following the successive steps: APTS self-assembled monolayer (SAM) layer, glutaaldehyde linker, anti-rabbit IgG binding. The insulating properties of the aminopropyl-triethoxysilane (APTS) monolayer were studied with cyclic voltammetry and the molecular structure was characterized with Fourier-transform infrared (FTIR) technique. The binding between antibody and different antigen concentration (rabbit IgG) was monitored by measuring the capacitance–voltage curve of the antibody functionalized EIS structure. A detection limit of 10 ng/ml of antigen can be detected.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,