Article ID Journal Published Year Pages File Type
1246186 Talanta 2010 7 Pages PDF
Abstract

In this study, SnO2 nanoparticles (SNPs)-poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were developed for electrochemical monitoring of DNA hybridization. The surfaces of polymer modified and polymer–SNP modified pencil graphite electrodes (PGEs) were firstly characterized by using SEM analysis. The electrochemical behaviours of these electrodes were also investigated using the differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The polymer–SNP modified PGEs were then tested for the electrochemical sensing of DNA based on the changes at the guanine oxidation signals. Experimental parameters, such as; different modifications in DNA oligonucleotides, DNA probe concentrations were examined to obtain more sensitive and selective electrochemical signals for nucleic acid hybridization. After optimization studies, DNA hybridization was investigated in the case of complementary of hepatitis B virus (HBV) probe, mismatch (MM), and noncomplementary (NC) sequences.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,