Article ID Journal Published Year Pages File Type
1246217 Talanta 2010 7 Pages PDF
Abstract

In the present work, the oxidative electrochemistry of nitrite on the poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes-(PEDOT/FePc/MWCNT) modified screen-printed carbon electrodes (SPCE) has been investigated. The parameters, such as overpotential, current density and rate constant at PEDOT/FePc/MWCNT-modified SPCE, were compared with an un-modified, FePc-, and FePc/MWCNT-modified SPCE for electro-oxidation of nitrite. As compared with the un-modified SPCE, an increase in the anodic peak current density (Jpa) (∼100%) along with a decrease in the anodic peak potential (Epa) of ∼150 mV for electro-oxidation of nitrite at the FePc-modified SPCE was observed. When an under-layer of MWCNT was introduced onto FePc-modified SPCE, denoted as FePc/MWCNT-modified SPCE, and the number of FePc/MWCNT bilayer was optimized, the heterogeneous electron transfer rate constant (k) at FePc/MWCNT-modified SPCE was enhanced about 7.8 times as compared with that at FePc-modified SPCE. Moreover, as a layer of PEDOT film was electrodeposited onto the FePc/MWCNT-modified SPCE, denoted as PEDOT/FePc/MWCNT-modified SPCE, a significant increase in current response along with a remarkable decrease in Epa were noticed. This can be attributed to the pre-concentration effect induced by the electrostatic interaction between the negatively charged nitrite and oxidized PEDOT film. On the whole, the PEDOT/FePc/MWCNT-modified SPCE greatly reduces the overpotential of ∼330 mV along with 3.5 times enhanced the peak current density for the electro-oxidation of nitrite as compared with un-modified SPCE. The sensitivity and limit of detection (S/N = 3) for the PEDOT/FePc/MWCNT-modified SPCE were found to be as 638 mA cm−2 M−1 and 71 nM, respectively. Notably, PEDOT/FePc/MWCNT-modified SPCE has a lower sensing potential than compared to several other modified electrodes. The developed sensor was also applied for the determination of nitrite in tap water sample.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,