Article ID Journal Published Year Pages File Type
1246423 Talanta 2006 7 Pages PDF
Abstract

A new and simple method for fabricating controllable insulated nanometer-sized platinum electrodes is presented. Electrochemical etching of platinum wire is employed, and then a repeated process of cycle voltammetric deposition of electrophoretic paint and heat curing for shrink film follows which effectively controls the size of the nanoelectrodes, which is different from previous DC electrolysis deposition. This technique allows complete insulation of the whole body of the etched platinum wire, except for the very tip with the shrink film during heat curing of the film, leaving an electrochemical active area with effective diameters of nanometers. The process overcomes the pinhole formation resulting from the electrophoretic paint deposition process. The size of the platinum electrodes and the thickness of the deposed paint for insulation can be properly controlled and reproduced. The fabricated electrodes show ideal steady-state voltammetric behaviors from which the effective areas of the nanoelectrodes are measured. The effective radius of the prepared nanoelectrodes ranges from 3.1 nm to hundreds of nanometers.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,