Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1246432 | Talanta | 2006 | 6 Pages |
The performance of a micropump operating on evaporation and capillary effects, developed for microfluidic (lab-on-a-chip) systems, was studied employing it as the fluid drive in a microfluidic flow injection (FI) system, with chemiluminescence (CL) detection. The micropump featured simple structure, small dimensions, low fabrication cost and stable and adjustable flow-rates during long working periods. Using a micropump with 6.6 cm2 evaporation area, with the ambient temperature and relative humidity fluctuating within 2 h in the ranges 20–21 °C and 30–32%, respectively, an average flow-rate of 3.02 μL/min was obtained, with a precision better than 1.2% R.S.D. (n = 61). When applied to the microchip FI-CL system using the luminol/hexacyanoferrate/H2O2 reaction, a precision of 1.4% R.S.D. (n = 11) was obtained for luminol at a sampling frequency of 30 h−1.