Article ID Journal Published Year Pages File Type
1246538 Talanta 2010 7 Pages PDF
Abstract

In this paper, a glass microchip-based emitter with a low-melting-point alloy (LMA) microelectrode and a monolithic tip for electrospray ionization mass spectrometry (ESI-MS) was described. So far, the fabrication of metal microelectrode achieving direct electrical contact in the microchannel of glass chip is still a challenge. A novel fabrication approach for LMA microelectrode in the glass chip was developed to achieve direct electrode–solution electrical contact in the microchannel. An electrode channel and a sample channel were firstly fabricated on a glass chip with a micropore connecting the two channels. The melted LMA was filled into the electrode channel under a pressure of ca. 100 kPa, forming a stable and nicely fitted interface at the micropore between the sample and the electrode channels due to surface tension effect. The melted LMA filled in the electrode channel was then allowed to solidify at room temperature. The channel geometries including the distance between the sample and the electrode channels on the mask and the turning angle of the electrode channel were optimized for fabricating the LMA electrode. In this work, an improved fabrication approach for monolithic emitter tip based on pyramid-shaped tip configuration and stepped grinding method was also developed to fabricate well-defined sharp tips with a smallest tip end size of ca. 15 μm × 50 μm. Two types of emitter tip end including puncher-shaped tip and fork-shaped tip were produced. The emitter with the fork-shaped tip showed better working stability (4.4% RSD, TIC) at nanoliter-scale flow rate of 50 nL/min. The fabrication approaches for the LMA microelectrode and emitter tip are simple and robust, and could be carried out in most of routine laboratories without the need of complicated and expensive instruments. The performance of the emitter was evaluated in the analysis of reserpine, angiotensin II and myoglobin. A continuous experiment over 6 h demonstrated good stability of the present system in long-term analysis.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,