Article ID Journal Published Year Pages File Type
1246743 Talanta 2009 8 Pages PDF
Abstract

A highly efficient noradrenalin (NA) biosensor was fabricated on the basis of hematoxylin electrodeposited on a glassy carbon electrode, GCE. The cyclic voltammetric responses of the hematoxylin biosensor at various scan rates, which were obtained in a 0.25 mmol L−1 NA solution, showed the characteristic shape typical of an ECcat process. The kinetic parameters such as electron transfer coefficient, α, the catalytic electron transfer rate constant, k′, and the standard catalytic electron transfer rate constant, k0, for oxidation of NA at the hematoxylin biosensor surface were estimated using cyclic and RDE voltammetry. The peaks of differential pulse voltammetric (DPV) for NA and acetaminophen (AC) oxidation at the hematoxylin biosensor surface were clearly separated from each other when they co-exited in the physiological pH (pH 7.0). It was, therefore, possible to simultaneously determine NA and AC in the samples at a hematoxylin biosensor. Linear calibration curves were obtained for 5.0 × 10−1 to 65.40 μmol L−1 and 65.40–274.20 μmol L−1 of NA, and for 12.00–59.10 μmol L−1 and 59.10–261.70 μmol L−1 of AC. The sensitivities of the biosensor to NA in the absence and presence of AC were found virtually the same, which indicates the fact that the electrocatalytic oxidation processes of NA are independent of AC and, therefore, simultaneous or independent measurements of the two analytes (NA and AC) are possible without any interference. The results of 16 successive measurements show an average voltammetric peak current of 1.13 ± 0.03 μA for an electrolyte solution containing 5.00 μmol L−1 NA. The hematoxylin biosensor has been satisfactorily used for the determination of NA and AC in pharmaceutical formulations. The results obtained, using the biosensor, are in very good agreement with those declared in the label of pharmaceutical inhalation products.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,