Article ID Journal Published Year Pages File Type
1246801 Talanta 2009 5 Pages PDF
Abstract

A novel strategy to fabricate hydrogen peroxide (H2O2) sensor was developed based on multi-wall carbon nanotube/silver nanoparticle nanohybrids (MWCNT/Ag nanohybrids) modified gold electrode. The process to synthesize MWCNT/Ag nanohybrids was facile and efficient. In the presence of carboxyl groups functionalized multi-wall carbon nanotubes (MWCNTs), silver nanoparticles (Ag NPs) were in situ generated from AgNO3 aqueous solution and readily attached to the MWCNTs convex surfaces at room temperature, without any additional reducing reagent or irradiation treatment. The formation of MWCNT/Ag nanohybrids product was observed by transmission electron microscope (TEM), and the electrochemical properties of MWCNT/Ag nanohybrids modified gold electrode were characterized by electrochemical measurements. The results showed that this sensor had a favorable catalytic ability for the reduction of H2O2. The resulted sensor could detect H2O2 in a linear range of 0.05–17 mM with a detection limit of 5 × 10−7 M at a signal-to-noise ratio of 3. The sensitivity was calculated as 1.42 μA/mM at a potential of −0.2 V. Additionally, it exhibited good reproducibility, long-term stability and negligible interference of ascorbic acid (AA), uric acid (UA), and acetaminophen (AP).

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , , ,