Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1247247 | Talanta | 2007 | 5 Pages |
Multifunctional nanoparticles possessing magnetic, long-lived fluorescence and bio-affinity properties have been prepared by copolymerization of a conjugate of (3-aminopropyl)triethoxysilane bound to a fluorescent Eu3+ complex, 4,4′-bis(1″,1″,1″-trifluoro- 2″,4″-butanedion-4″-yl)chlorosulfo-o-terphenyl-Eu3+ (APS-BTBCT-Eu3+), free (3-aminopropyl)triethoxysilane (APS) and tetraethyl orthosilicate (TEOS) in the presence of poly(vinylpyrrolidone) (PVP) stabilized magnetic Fe3O4 nanoparticles (∼10 nm) with aqueous ammonia in ethanol. The nanoparticles were characterized by transmission electron microscopy (TEM), spectrofluorometry and vibrating sample magnetometry methods. The direct-introduced amino groups on the nanoparticle's surface by using free APS in nanoparticle preparation facilitated the surface modification and bioconjugation of the nanoparticles. The nanoparticle-labeled transferrin was prepared and used for staining the cultured Hela cells. A time-resolved fluorescence imaging technique that can fully eliminate the fast-decaying background noises was developed and used for the fluorescence imaging detection of the cells. A distinct image with the high ratio of signal to noise (S/N) was obtained.