Article ID Journal Published Year Pages File Type
1247320 Talanta 2006 14 Pages PDF
Abstract

Nanoscience and nanotechnology deal with the study and application of structures of matter of at least one dimension of the order of less than 100 nm (1 nm = one millionth of a millimetre). However, properties related to low dimensions are more important than size. Nanotechnology is based on the fact that some very small structures usually have new properties and behaviour that are not displayed by the bulk matter with the same composition.This overview introduces and discusses the main concepts behind the development of nanosensors and the most relevant applications in the field of environmental analysis. We focus on the effects (many of which are related to the quantum nature) that distinguish nanosensors and give them their particular behaviour. We will review the main types of nanosensors developed to date and highlight the relationship between the property monitored and the type of nanomaterial used.We discuss several nanostructures that are currently used in the development of nanosensors: nanoparticles, nanotubes, nanorods, embedded nanostructures, porous silicon, and self-assembled materials. In each section, we first describe the type of nanomaterial used and explain the properties related to the nanostructure. We then briefly describe the experimental set up and discuss the main advantages and quality parameters of nanosensing devices. Finally, we describe the applications, many of which are in the environmental field.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,