Article ID Journal Published Year Pages File Type
1247346 Talanta 2006 6 Pages PDF
Abstract

A new technique to analyze aqueous samples for nanograms per liter levels of volatile and semivolatile compounds using microextraction and thermal desorption into a gas chromatograph/ion trap mass spectrometer (GC/MS) is described. This method is inherently sensitive (50 mL of aqueous sample is extracted prior to each desorption), uses no solvents, and detects volatiles and semivolatiles in the same analysis. Aqueous standards and environmental samples are pumped through a length of porous-layer open-tubular capillary column, which is then thermally desorbed onto a 30 m × 0.25 mm i.d. analytical column interfaced to an ion trap mass spectrometer for subsequent separation and detection. Sharp chromatographic peaks and reproducible retention times (RT) were observed. Replicate injections of surrogates (n = 6) averaged 32.6% R.S.D. Analysis of domestic tap water detected 55 analytes, some at the low-nanograms per liter level, and detected 3 halogenated ethenes, not previously reported in drinking water. Analysis of an aqueous sample from a municipal ground water source detected the presence of numerous semivolatile compounds at trace-levels.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,