Article ID Journal Published Year Pages File Type
1248775 TrAC Trends in Analytical Chemistry 2009 22 Pages PDF
Abstract

Pre-processing of near-infrared (NIR) spectral data has become an integral part of chemometrics modeling. The objective of the pre-processing is to remove physical phenomena in the spectra in order to improve the subsequent multivariate regression, classification model or exploratory analysis. The most widely used pre-processing techniques can be divided into two categories: scatter-correction methods and spectral derivatives. This review describes and compares the theoretical and algorithmic foundations of current pre-processing methods plus the qualitative and quantitative consequences of their application. The aim is to provide NIR users with better end-models through fundamental knowledge on spectral pre-processing.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,