Article ID Journal Published Year Pages File Type
1249703 Vibrational Spectroscopy 2010 4 Pages PDF
Abstract

Wheat selected for cultivation through the centuries has a glume that is “soft” instead of “tough” as naturally occurring. In production, this is desirable because it enables mechanical threshing with efficient separation of kernel from the head of each stalk without damaging the kernel. FT-IR microspectroscopy provides chemically based, objective assessment of genetic expression by measuring the extent of genetic expression. In the Microbeam Molecular Spectroscopy Laboratory, Manhattan, KS, an imaging FT-IR microspectrometer with a detector array focused on the image plane was used to obtain spectral data from dissected glume specimens of nine tough and eleven soft wheat cultivars in a rectangular mapping pattern. With cellulose as the substrate, the extent of lignification is measurable from the ratio of the lignin (1508 cm−1) baseline adjusted band area to the representative cellulosic (1370 cm−1) band area. A distinction between soft and tough glumes is obtained in numerical terms. Using a band ratio minimizes variation due to thickness differences. While analyzing mapped sections of glume, care is taken to avoid tabulation of spectral data from vascular bundles. Inclusion of these data would to avoid tabulation of spectral data from vascular bundles. Inclusion of these data would bias the analysis toward the composition of highly lignified vascular bundles. Spatially resolved focal plane array FT-IR microspectroscopy reveals the extent of glume lignification that is coincident with the toughness trait. This enables breeders to rank the degree of lignin expression and discriminate between soft and tough breeding results.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,