Article ID Journal Published Year Pages File Type
1249829 Vibrational Spectroscopy 2015 5 Pages PDF
Abstract

Tensile deformations of isotactic polypropylene (iPP) and its nanocomposite were examined by a rheo-optical characterization technique based on near-infrared (NIR) spectroscopy to derive the submolecular-level understanding of the deformation mechanism during a tensile test. Sets of NIR spectra of the iPP samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. Mechanical deformation of the samples was readily captured as strain-dependent NIR spectra. However, the main feature of the NIR spectra was overwhelmed by the contribution from the baseline change due to the substantial decrease in the sample thickness and subsequent change in the NIR light scattering. The variation of the spectral feature suggests that the deformation of the iPP involves the elongation of the rubbery amorphous chains prior to the displacement of the crystalline lamellae, providing elastic and subsequent plastic deformations during the tensile testing. In addition, it is revealed that the nanoclay layers dispersed within the iPP matrix restrict the elongation of the amorphous chains. Such interaction makes iPP hard and brittle, so that it yields no obvious ductile fracture during the tensile deformation.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,