Article ID Journal Published Year Pages File Type
1250241 Vibrational Spectroscopy 2011 7 Pages PDF
Abstract

The potential of near infrared (NIR) spectroscopy in characterization of organically modified clay minerals is introduced. Selected organo-clays, possibly perspective fillers in clay polymer nanocomposites, were prepared from Na-montmorillonite and different surfactants containing octylammonium chain(s), hexadecylammonium chain(s) or a benzene ring with or without a reactive double bond. Based on the stretching (ν) and bending (δ) vibrations observed in the middle IR (MIR) region, the first overtone (2νXH) and combination (ν + δ)XH modes of XH groups (X = O, C, N) are identified. The effect of larger alkylammonium cations on the vibrations of Si–O and OH bonds in montmorillonite layers is observed. The changes in the intensity of the (ν + δ)H2O band near 5250 cm−1 allows for comparison of the amount of water adsorbed on the montmorillonite surface. The water content decreases with the size of the organic cation reflecting increasing hydrophobicity of the montmorillonite surface. The NIR region shows the 2νCH3 and 2νCH2 bands in the 5900–5500 cm−1 region, an upward shift is observed for the complex band due to 2νCH(Ar) of aromatic benzene ring. The NIR spectra are extremely useful in identification of NH2+, NH+ and vinyl groups, which are difficult to recognize in the MIR spectra of organo-clays due to overlapping with other absorption bands. The intense bands corresponding to overtones and combination vibrations of NH3+ and NH2+ groups are found in the 6600–6050 cm−1 and 5000–4600 cm−1 regions, the (ν + δ)NH+ is unambiguously identified near 4750 cm−1. The characteristic band assigned to 2νCH2 in H2CC is detected near 6130 cm−1.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,