Article ID Journal Published Year Pages File Type
1251808 Chemistry and Physics of Lipids 2012 10 Pages PDF
Abstract

Peroxidation of lipids, particularly polyunsaturated fatty acid residues (PUFA) of phospholipids and cholesterol esters, is a process of marked implications: it shortens the shelf-life of food and drugs, it causes fragmentation of DNA, it damages cellular membranes and it promotes the genesis of many human diseases. Much effort is therefore devoted to a search for “potent antioxidants”, both synthetic and from natural sources, mostly plants.This, in turn, requires a reliable, simple, preferably high throughput assay of the activity of alleged antioxidants. The most commonly used assays are based on measurements of the total antioxidant capacity (TAC) of a solution, as evaluated either by determining the rate of oxidation of the antioxidant or by measuring the protection of an easily determined indicator against oxidation by the antioxidants.The commonly used assays utilized for ranking antioxidants share three common problems:(i) They usually evaluate the effects of those antioxidants that quench free radicals, which constitute only a part of the body's antioxidative network, in which enzymes play the central role. (ii) Both the capacity and potency of antioxidants, as obtained by various methods, do not necessarily correlate with each other. (iii) Most estimates are based on methods conducted in solution and are therefore not necessarily relevant to processes that occur at the lipid–water interfaces in both membranes and micro emulsions (e.g. lipoproteins).Given this “state of art”, many researchers, including us, try to develop a method based on the formation of hydroperoxides (LOOH) upon peroxidation of PUFA in lipoproteins or in model membranes, such as liposomes. In these systems, as well as in lipoproteins, the most apparent effect of antioxidants is prolongation of the lag time preceding the propagation of a free radical chain reaction. In fact, under certain conditions both water soluble antioxidants (e.g. vitamin C and urate) and the lipid soluble antioxidant tocopherol (vitamin E), promote or even induce peroxidation.Based on the published data, including our results, we conclude that terms such as ‘antioxidative capacity’ or ‘antioxidative potency’ are context-dependent. Furthermore, criteria of the efficacy of antioxidants based on oxidation in solution are not necessarily relevant to the effects of antioxidants on peroxidation in biological systems or model lipid assemblies, because the latter processes occur at water/lipid interfaces.We think that evaluation of antioxidants requires kinetic studies of the biomarker used and that the most relevant characteristic of ‘oxidative stress’ in the biological context is the kinetics of ex vivo peroxidation of lipids. We therefore propose studying the kinetics of lipid-peroxidation in the absence of the studied antioxidant and in its presence at different antioxidant concentrations. These protocols mean that antioxidants are assayed by methods commonly used to evaluate oxidative stress. The advantage of such evaluation is that it enables quantization of the antioxidants’ efficacy in a model of relevance to biological systems. In view of the sensitivity of the lag time preceding peroxidation, we propose studying how much antioxidant is required to double the lag observed prior to rapid peroxidation. The latter quantity (C2lag) can be used to express the strength of antioxidants in the relevant system (e.g. LDL, serum or liposomes).

► Determination of both the capacity and the potency of an antioxidant requires kinetic measurements. ► The lag reflects the capacity of the antioxidant. ► The initial rate of formation of peroxidation products relates to the potency of the antioxidant. ► Effect of antioxidants on the peroxidation in solution is not indicative of the characteristics of the antioxidant at water/oil interfaces. ► Antioxidants should be ranked on the basis of methods currently used to evaluate oxidative stress.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , ,