Article ID Journal Published Year Pages File Type
1252826 Chemistry and Physics of Lipids 2006 11 Pages PDF
Abstract

We investigated the effect of pegylation on the physical stability, morphology and membrane integrity of arsonoliposomes. Arsonoliposomes composed of distearoylglycerophosphocholine (DSPC), cholesterol (Chol) and the palmitoyl side chain arsonolipid (with concentrations ranging from 0 mol% [DSPC/Chol vesicles] to 53 mol% of total lipid) containing either 4 or 8 mol% DPPE–PEG2000 or DSPE–PEG2000, were prepared by sonication. Arsonoliposome membrane integrity was evaluated by measuring the retention of encapsulated calcein in vesicles (during incubation in buffer or fetal calf serum [FCS]) while physical stability was evaluated by measuring vesicle dispersion turbidity (during incubation in water or CaCl2). Vesicle morphology was studied by cryo-electron microscopy. Experimental results show that: (i) PEG-lipids are incorporated in arsonoliposomes (as confirmed by the vesicle zeta potential modulation), (ii) pegylation of arsonoliposomes prevents their aggregation and fusion in the presence of calcium ions and (iii) when 8 mol% of PEG–DSPE is incorporated in arsonoliposomes based on their arsonolipid content, two groups of pegylated vesicles are formed: low content arsonoliposomes (<20 mol% arsonolipid) which are highly leaky and high content arsonoliposomes (>27 mol% arsonolipid) which are highly stable (70% calcein retention after 24 h incubation in fetal calf serum [FCS]). In addition to high membrane integrity, the high content pegylated arsonoliposomes are morphologically perfect round-shaped vesicles without the sharp edges typically observed with non-pegylated DSPC-containing arsonoliposomes.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , ,