Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1253780 | Chemistry and Physics of Lipids | 2007 | 10 Pages |
Abstract
We report on the dynamics of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine rhodamine B sulfonyl ammonium salt (Rhodamine-PE), incorporated into unilamellar vesicles composed of 1,2-dimyristoyl-sn-phosphatidylcholine (DMPC). A key question in the investigation of any bilayer system using tethered fluorescent probes is the role that the chromophore itself plays in determining the organization of phospholipid bilayers. In this work, we investigate the role of headgroup-bound chromophores by measuring the steady state and time-resolved fluorescence response of the tethered rhodamine chromophore as a function of concentration in the bilayer. We find that both the steady state and dynamical properties of the chromophores change with concentration, in a manner consistent with the introduction of disorganization to the bilayers. Steady state fluorescence spectra show a clear perturbation of the rhodamine emission spectrum at a chromophore concentration of 0.25Â mol%, which is not seen for lower concentrations, and fluorescence anisotropy data show that both the motional freedom and confining volume experienced by the chromophore increase with concentration. Taken collectively, our data point to the importance of using low concentrations of optical probes in the interrogation of bilayer structures.
Related Topics
Physical Sciences and Engineering
Chemistry
Chemistry (General)
Authors
Monique M. Lapinski, G.J. Blanchard,