Article ID Journal Published Year Pages File Type
1253908 Chemistry and Physics of Lipids 2007 18 Pages PDF
Abstract

Labd-7,13-dien-15-ol (1), labd-13-ene-8α,15-diol (2), and labd-14-ene-8,13-diol (sclareol) have been found to exhibit cytotoxic and cytostatic effects. Their partitioning into phospholipid bilayers may induce membrane structure modifications, crucial in the development of liposomes. DSC was used to elucidate the profile of modifications induced in DPPC bilayers by incorporating increasing concentrations of the labdanes. Labdanes 1, 2 and sclareol were incorporated into SUV liposomes composed of DPPC their physicochemical stability was monitored (4 °C) and was compared to liposomes incorporating cholesterol. All labdanes strongly affect the bilayer organization in a concentration dependent manner in terms of a decrease of the cooperativity, the fluidization and partially destabilization of the gel phase, the induction of a lateral phase separation and the possible existence of interdigitated domains in the bilayer. The physicochemical stability of liposomes was strongly influenced by the chemical features of the labdanes. The liposomal preparations were found to retain their stability at low labdane concentration (10 mol%), while at higher concentrations up to 30 mol% a profound decrease in intact liposomes occurred, and a possible existence of interdigitated sheets was concluded.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, ,