Article ID Journal Published Year Pages File Type
1259727 Journal of Rare Earths 2009 8 Pages PDF
Abstract

The biochemical effects of gadolinium chloride were studied using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to investigate the biochemical composition of tissue (liver and kidney) aqueous extracts obtained from control and gadolinium chloride (GdCl3) (10 and 50 mg/kg body weight, intraperitoneal injection, i.p.) treated rats. Tissue samples were collected at 48, 96 and 168 h p.d. after exposure to GdCl3, and extracted using methanol/chloroform solvent system. 1H NMR spectra of tissue extracts were analyzed by pattern recognition using principal components analysis. The liver damages caused by GdCl3 were characterized by increased succinate and decreased glycogen level and elevated lactate, alanine and betaine concentration in liver. Furthermore, the increase of creatine and lactate, and decrease of glutamate, alanine, phosphocholine, glycophosphocholine (GPC), betaine, myo-inositol and trimethylamine N-oxide (TMAO) levels in kidney illustrated kidney disturbance induced by GdCl3.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)