Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1260525 | Journal of Rare Earths | 2010 | 4 Pages |
YbPO4:Tb3+ were synthesized by mild hydrothermal method. The luminescent properties, morphologies and structure of the obtained powders were characterized by photoluminescence (PL) spectra, FESEM, X-ray diffractometer (XRD) and FTIR. The results showed that the prepared YbPO4:Tb3+ nanoparticles were pure tetragonal phase and the average grain size varied with increasing of Tb3+ concentration. Hydrothermal temperature was revealed to be the key factor to enhance the emission intensity of YbPO4:Tb3+ phosphors. The spherical nanoparticles could be effectively excited by near UV (369 nm) light and exhibited green performance at 543 nm (5D4→7F5), 489 nm (5D4→7F6) and 586 nm (5D4→7F4). The CIE chromaticity was calculated to be x=0.298, y=0.560. The YbPO4:Tb3+ nanoparticles exhibited potential to act as UV absorber for solar cells to enhance the conversion efficiency.