Article ID Journal Published Year Pages File Type
1262030 Journal of Rare Earths 2009 7 Pages PDF
Abstract

MnOx-CeO2 composite catalysts were prepared by a coprecipitation method and tested for formaldehyde (HCHO) and carbon monoxide (CO) oxidation. X-ray photon spectroscopy (XPS) results indicated that the average oxidation state of surface Mn species in CeMn composite catalyst was higher compared to the pure MnOx. The enhancement of reactivity for HCHO oxidation was due to the activation of the lattice oxygen species in MnOx by the addition of CeO2, which was confirmed by the H2 temperature programmed reduction (H2-TPR) results. The remarkable enhancement of reactivity for CO oxidation by the addition of CeO2 was due to the active oxygen species generated on the CeO2 surface which directly participated in the reaction.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)