Article ID Journal Published Year Pages File Type
1262141 Journal of Rare Earths 2009 4 Pages PDF
Abstract

Luminescent material Ba3Gd(BO3)3 doped with Eu3+ ion was prepared by high temperature solid-state method. The preparing conditions, luminescent properties, and particle morphology of Ba3Gd(BO3)3:Eu3 + phosphor were studied with X-ray diffraction (XRD), fluorescence spectroscopy, and scanning electron microscopy (SEM). The results obtained by XRD showed that pure phase of Ba3Gd(BO3)3 was obtained at 1000 °C. Images from SEM displayed that the particles of Ba3Gd(BO3)3:Eu3+ phosphor had a spherical shape with an average diameter of about 200–400 nm. The luminescence spectra showed that Ba3Gd(BO3)3:Eu3+ phosphor was effectively excited by the near ultraviolet (UV) light (396 nm) and blue light (466 nm). The main emission peaks of Ba3Gd(BO3)3:Eu3+ phosphor were assigned to the supersensitive transition 5D0 –7F2 (611 and 616 nm) of Eu3+ ion when samples were excited at 255 and 396 nm, respectively, and the luminescent intensity of Ba3Gd(BO3)3:Eu3+ at 611 and 616 nm reached to the maximum when the doped content of Eu3+ ion was 10mol.%. Therefore, this phosphor could be a promising red component for possible applications in the field of white LED.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)