Article ID Journal Published Year Pages File Type
1262377 Journal of Rare Earths 2012 8 Pages PDF
Abstract

The microstructure and mechanical properties of as-cast Mg-3.8Zn-2.2Ca alloy with different Ce contents were investigated by both optical and electron microscopy, X-ray diffraction, differential scanning calorimetry analysis, tensile and creep tests. The results indicated that adding 0.41 wt.%−1.83 wt.% Ce could refine the grains of the alloy, and the grain size gradually decreased as the Ce content increased. Furthermore, addition of either 0.41 wt.% or 0.89 wt.% Ce caused the morphology of the Ca2Mg6Zn3 phase to change partially from semi-continuous block to discrete fine particles. However, after adding 1.83 wt.% Ce, portions of the Ca2Mg6Zn3 and Mg12Ce phases were mixed and this Ca2Mg6Zn3+Mg12Ce eutectic changed to a different coarse semi-continuous morphology. In addition, addition of 0.41 wt.%−1.83 wt.% Ce improved the tensile and creep properties of the alloy. Amongst these Ce-containing alloys, the alloy with 0.89 wt.% Ce exhibited the best ultimate tensile strength and elongation while the alloy with 1.83 wt.% Ce had the best yield strength and creep properties.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)