Article ID Journal Published Year Pages File Type
1262513 Marine Chemistry 2007 18 Pages PDF
Abstract

To elucidate iron regeneration and organic iron(III)-binding ligand formation during microzooplankton and copepod grazing on phytoplankton, incubation experiments were conducted in the western subarctic Pacific. During 8 days of dark incubation of ambient water and that amended with plankton concentrate, dissolved iron and organic iron(III)-binding ligands accumulated, approximately proportionally to the decrease in chlorophyll a. The observed increases in dissolved iron concentration were much greater than those expected from the consumption of phytoplankton biomass and previously reported Fe:C value of cultured algal cells, suggesting resolution from colloidal or particulate iron adsorbed onto the algal cell surface. When copepods were added to the ambient water, organic iron(III)-binding ligands accumulated more rapidly than in the control receiving no copepod addition, although consumed phytoplankton biomass was comparable between the two treatments. Bioassay experiment using filtrates collected from the incubation experiment showed that organic ligands formed during microzooplankton grazing reduced the iron bioavailability to phytoplankton and suppressed their growth. Moreover, picoplankton Synechococcus sp. and Micromonas pusilla were more suppressed by the organic ligands than the diatom Thalassiosira weissflogii. In conclusion, through microzooplankton and copepod grazing on phytoplankton, organic iron(III)-binding ligands as well as regenerated iron are released into the ambient seawater. Because the ligands lower iron bioavailability to phytoplankton through complexation and the degree of availability reduction varies among phytoplankton species, grazing by zooplankton can shift phytoplankton community structure in iron-limited waters.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , ,