Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1264361 | Organic Electronics | 2009 | 8 Pages |
In this work, bis-(triisopropylsilylethynyl) pentacene (TIPS pentacene) films were fabricated with a newly designed system for controlled solution casting with adjustable nitrogen flow and deposition temperature, which consequently enabled a systematic examination of crystal orientation-dependent mobilities in single crystal and single-crystal textured TIPS pentacene transistors. One of the two π–π stacking directions in TIPS pentacene films was found to be close to [2 1 0] (or the long axis of needle-shaped TIPS pentacene films), with frequent twinning observed between crystalline domains across the (12¯0) planes that are the lateral facets for individual crystallites. The [2 1 0] axes of crystalline TIPS pentacene thin films ran across source–drain channels at different angles, showing a ten-fold hole mobility increase as the [2 1 0] crystallographic axis became parallel to the channel direction. Our results also suggest that the controlled solution casting may be a promising method in fabricating solution-processible small-molecule organic semiconductors with varied morphologies.