Article ID Journal Published Year Pages File Type
1264806 Organic Electronics 2010 7 Pages PDF
Abstract

We report a significant increase in the open circuit voltage (Voc) and power conversion efficiency in both chloroaluminium phthalocyanine (ClAlPc)/fullerene (C60) and boron subphthalocyanine chloride (SubPc)/C60 organic photovoltaic (OPV) cells with the insertion of a thin molybdenum oxide (MoOx) hole-extracting layer. This improvement was not seen with copper phthalocyanine (CuPc)/C60, and the addition of the MoOx layer leads to reduced device performance for pentacene/C60 cells. Cells containing the MoOx layer demonstrated significantly improved stability compared to the cells deposited on bare indium-tin oxide (ITO). External quantum efficiency (EQE) measurements taken before and after constant AM1.5G illumination for 60 min showed reduced current losses for all cells containing the MoOx layer, especially in spectral regions where the donor layer contributes. We attribute this improvement to the increased stability at the MoOx/donor interface.

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , , , ,