Article ID Journal Published Year Pages File Type
1264871 Organic Electronics 2014 5 Pages PDF
Abstract

•Photochromic molecule doped into polymeric semiconductor matrix induced optical switching in transistor properties.•Photoswitching was attributed to the carrier scattering by the closed-ring isomer.•Thermal stability of the photoswitching was drastically improved by appropriate molecular design.

Thermally induced structural change in photoisomerization molecules is a serious obstacle to the development of optically controllable organic field-effect transistors (OFETs). This is because the thermal relaxation of molecular structures degrades photo-induced change in drain current and removes the memory function. To deal with this issue, a naphthopyran (NP) derivative, namely 3,13-dihydro-3-(4-triphenylaminyl)-3,13-diphenylbenzopyrano[5,6-a]carbazole (NP-TPAC) was tested that displays pseudo p-type photochromism at room temperature. The NP-TPAC-doped poly(triarylamine) (PTAA) film exhibited a reversible change in transistor properties; the drain current was reduced by ultraviolet (UV) and returned to its original value by visible (VIS) light irradiation. Importantly, no change in the drain current was observed at room temperature for more than 30 h under dark conditions. This was because the open-ring trans–trans (TT) isomer of NP-TPAC is thermally stable owing to the CH-π interaction and the steric force exerted by the phenyl ring of the carbazole unit onto the double bond responsible for the thermal back reaction. In other words, the thermal stability of photochromism-based optical devices can be greatly improved by adopting an appropriate molecular design.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , ,