Article ID Journal Published Year Pages File Type
1265009 Organic Electronics 2009 7 Pages PDF
Abstract

We suggest a novel method for treating the surfaces of dielectric layers in organic field effect transistors (OFETs). In this method, a blend of poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) and dimethylsiloxane (DMS) with a curing agent is spin coated onto the surface of a dielectric substrate, silicon oxide (SiO2), and then thermally cured. X-ray photoelectron spectroscopy, contact angle measurements, and morphology analysis were used to show that the hydrophilic DMS layer is preferentially adsorbed on the SiO2 substrate during the spin coating process. After thermal curing, the bottom DMS layer becomes a hydrophobic PDMS layer. This bottom PDMS layer becomes thinner during curing due to the upward motion of the hydrophobic PDMS molecules. The FET mobility of the cured system was 10−2 cm2/Vs, which is similar to that of polymeric semiconductors on octadecyltrichlorosilane treated SiO2 dielectric layers. We also discuss the possibility of using this blend method to increase the air-stability of polymeric semiconductors.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , , , , ,