Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1265012 | Organic Electronics | 2009 | 6 Pages |
Solution-processed vanadium oxide (V2O5) as an anode interlayer is introduced between the organic layer and the Ag electrode for improving the performance of the low-cost inverted polymer solar cells hybridized with ZnO nanorods. Our investigations indicate that the solution-processed V2O5 interlayer as an electron-blocking layer can effectively prevent the leakage current at the organic/Ag interface. The power conversion efficiency is improved from 2.5% to 3.56% by the introduction of the V2O5 interlayer. The V2O5 interlayer also serves as an optical spacer to enhance light absorption, and thereby increases the photocurrent. Compared to the vacuum-deposited techniques, the fabrication of the solution-processed V2O5 interlayer is simple and effective. The solution-based approach makes it attractive for applications to mass production and potentially printed organic electronics.