Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1265019 | Organic Electronics | 2009 | 7 Pages |
A low-bandgap polymer (PF-PThCVPTZ) consisted of fluorene and phenothiazine was designed and synthesized. With the donor–acceptor segment, the partial charge transfer can be built in the polymer backbone leading to a wide absorbance. The absorption spectrum of PF-PThCVPTZ exhibits a peak at 510 nm and an absorption onset at 645 nm in the visible range. As blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an electron acceptor, narrow bandgap PF-PThCVPTZ as electron donor shows significant solar cell performance. Under AM 1.5 G, 100 mA/cm2 illumination, a power conversion efficiency (PCE) of 1.85% was recorded, with a short circuit current (JSC) of 5.37 mA/cm2, an open circuit voltage (VOC) of 0.80 V, and a fill factor (FF) of 43.0%.